Geotechnical Engineering—A Historical Perspective

 1. Geotechnical Engineering—A Historical Perspective

For engineering purposes, soil is defined as the uncemented aggregate of mineral grains and decayed organic matter (solid particles) with liquid and gas in the empty spaces between the solid particles. Soil is used as a construction material in various civil engineering projects, and it supports structural foundations. Thus, civil engineers must study the properties of soil, such as its origin, grain-size distribution, ability to drain water, compressibility, shear strength, and load-bearing capacity. Soil

mechanics is the branch of science that deals with the study of the physical properties of soil and the behavior of soil masses subjected to various types of forces. Soil engineering is the application of the principles of soil mechanics to practical problems.

Geotechnical engineering is the subdiscipline of civil engineering that involves natural materials found close to the surface of the earth. It includes the application of the principles of soil mechanics and rock mechanics to the design of foundations, retaining structures, and earth structures.

1.1 Geotechnical Engineering Prior to the 18 th Century 

The record of a person’s first use of soil as a construction material is lost in antiquity. In true engineering terms, the understanding of geotechnical engineering as it is known today began early in the 18th century (Skempton, 1985). For years the art of geotechnical engineering was based on only past experiences through a succession of experimentation without any real scientific character. Based on those experimentations, many structures were built—some of which have crumbled, while others are

still standing. Recorded history tells us that ancient civilizations flourished along the banks of

rivers, such as the Nile (Egypt), the Tigris and Euphrates (Mesopotamia), the Huang Ho (Yellow River, China), and the Indus (India). Dykes dating back to about 2000 B.C. were built in the basin of the Indus to protect the town of Mohenjo Dara (in what became Pakistan after 1947). During the Chan dynasty in China (1120 B.C. to 249 B.C.), many dykes were built for irrigation purposes. There is no evidence that measures were taken to stabilize the foundations or check erosion caused by floods 1985). Ancient Greek civilization used isolated pad footings and strip-and-raft foundations for building structures. Beginning around 2750 B.C., the five most important pyramids were built in Egypt in a period of less than a century (Saqqarah, Meidum, Dahshur South and North, and Cheops). This posed formidable challenges regarding foundations, stability of slopes, and construction of underground chambers. With the arrival of Buddhism in China during the Eastern Han dynasty in 68 A.D., thousands of pagodas were built. Many of these structures were constructed on silt and soft clay layers. 

In some cases the foundation pressure exceeded the load-bearing capacity of the soil and thereby caused extensive structural damage. One of the most famous examples of problems related to soil-bearing capacity in the construction of structures prior to the 18th century is the Leaning Tower of Pisa in Italy. (Figure 1.1.) Construction of the tower began in 1173 A.D. when the Republic of Pisa was flourishing and continued in various stages for over 200 years.

Figure 1.1 Leaning Tower of Pisa, Italy (Courtesy of Braja Das)

The structure weighs about 15,700 metric tons and is supported by a circular base having a diameter of 20 m. The tower has tilted in the past to the east, north, west and, finally, to the south. Recent investigations showed that a weak clay layer exists at a depth of about 11 m below the ground surface, compression of which caused the tower to tilt. By 1990 it was more than 5 m out of plumb with the 54 m height. The tower was closed in 1990 because it was feared that it would either fall over or collapse. It has recently been stabilized by excavating soil from under the north side of the tower. About 70 metric tons of earth were removed in 41 separate extractions that spanned the width of the tower. As the ground gradually settled to fill the resulting space, the tilt of the tower eased. The tower now leans 5 degrees. The half-degree change is not noticeable, but it makes the structure considerably more stable.
Figure 1.2 is an example of a similar problem. The towers shown in Figure 1.2 are located in Bologna, Italy, and they were built in the 12th century. The tower on the left is the Garisenda Tower. It is 48 m high and weighs about 4210 metric tons. It has
Figure 1.2 Tilting of Garisenda Tower (left) and Asinelli Tower (right) in Bologna, Italy
(Courtesy of Braja Das) 

tilted about 4 degree. The tower on the right is the Asinelli Tower, which is 97 m high
and weighs 7300 metric tons. It has tilted about 1.3 degree.After encountering several foundation-related problems during construction over centuries past, engineers and scientists began to address the properties and behavior of soils in a more methodical manner starting in the early part of the 18th
century. Based on the emphasis and the nature of study in the area of geotechnical engineering, the time span extending from 1700 to 1927 can be divided into four major periods (Skempton, 1985):

1. Pre-classical (1700 to 1776 A.D.)
2. Classical soil mechanics—Phase I (1776 to 1856 A.D.)
3. Classical soil mechanics—Phase II (1856 to 1910 A.D.)
4. Modern soil mechanics (1910 to 1927 A.D.)

Brief descriptions of some significant developments during each of these four
periods are discussed below.
Next
This is the current newest page
Previous
Next Post »
Thanks for your comment