1. Geotechnical Engineering—A Historical Perspective
For engineering purposes, soil is defined as the uncemented aggregate of mineral grains and decayed organic matter (solid particles) with liquid and gas in the empty spaces between the solid particles. Soil is used as a construction material in various civil engineering projects, and it supports structural foundations. Thus, civil engineers must study the properties of soil, such as its origin, grain-size distribution, ability to drain water, compressibility, shear strength, and load-bearing capacity. Soil
mechanics is the branch of science that deals with the study of the physical properties of soil and the behavior of soil masses subjected to various types of forces. Soil engineering is the application of the principles of soil mechanics to practical problems.
Geotechnical engineering is the subdiscipline of civil engineering that involves natural materials found close to the surface of the earth. It includes the application of the principles of soil mechanics and rock mechanics to the design of foundations, retaining structures, and earth structures.
1.1 Geotechnical Engineering Prior to the 18 th Century
The record of a person’s first use of soil as a construction material is lost in antiquity. In true engineering terms, the understanding of geotechnical engineering as it is known today began early in the 18th century (Skempton, 1985). For years the art of geotechnical engineering was based on only past experiences through a succession of experimentation without any real scientific character. Based on those experimentations, many structures were built—some of which have crumbled, while others are
still standing. Recorded history tells us that ancient civilizations flourished along the banks of
rivers, such as the Nile (Egypt), the Tigris and Euphrates (Mesopotamia), the Huang Ho (Yellow River, China), and the Indus (India). Dykes dating back to about 2000 B.C. were built in the basin of the Indus to protect the town of Mohenjo Dara (in what became Pakistan after 1947). During the Chan dynasty in China (1120 B.C. to 249 B.C.), many dykes were built for irrigation purposes. There is no evidence that measures were taken to stabilize the foundations or check erosion caused by floods 1985). Ancient Greek civilization used isolated pad footings and strip-and-raft foundations for building structures. Beginning around 2750 B.C., the five most important pyramids were built in Egypt in a period of less than a century (Saqqarah, Meidum, Dahshur South and North, and Cheops). This posed formidable challenges regarding foundations, stability of slopes, and construction of underground chambers. With the arrival of Buddhism in China during the Eastern Han dynasty in 68 A.D., thousands of pagodas were built. Many of these structures were constructed on silt and soft clay layers.
In some cases the foundation pressure exceeded the load-bearing capacity of the soil and thereby caused extensive structural damage. One of the most famous examples of problems related to soil-bearing capacity in the construction of structures prior to the 18th century is the Leaning Tower of Pisa in Italy. (Figure 1.1.) Construction of the tower began in 1173 A.D. when the Republic of Pisa was flourishing and continued in various stages for over 200 years.
Show Conversion Code Hide Conversion Code Show Emoticon Hide Emoticon